AVSD requiring re-do surgery- “leave it“ or “correct it“

Martin Schmiady
Outcomes and reoperations after surgical repair of complete AVSD –
10 years single center experience
Risk factors for postoperative LAVVR

p = 0.03

p = 0.001
Case report

- 5 month old boy (5.26Kg, 57.5cm)
- cAVSD, ASD I 6x8mm, Inlet VSD 3x6mm, L→R Shunt
- Moderate regurgitation of common AVV
- Pulmonary hypertension
- Trisomy 21
Operation: Surgeons view

S. Daebritz., 2004
Operation: Two patch repair

S. Daebritz., 2004
Operation: Two patch repair

Superior bridging leaflet, opened

Inferior bridging leaflet, opened

S. Daebritz., 2004
Operation: Two patch repair
Operation: Two patch repair
Operation: Cleft closure

S. Daebritz., 2004
Postoperative course

- Postoperative course was uneventful
- 1 ½ year later:
 - Severe LAVV stenosis (mean gradient 14 mmHg)
 - MVA 0.7 cm²
 - Systemic pulmonary hypertension
 - Moderate LAVVR
- Coincidence of a newly diagnosed acute myeloid leukaemia
- Rehospitalization because of right heart failure
- 22.11.2013: Heart catheter examination with balloon valvuloplasty of the LAVV (mean gradient 6 mmHg)
Echocardiography 27.11.2013 (before first Re-do surgery)
Echocardiography 27.11.2013 (before first Re-do surgery)
Summary

- 2 ½ year old boy (9.5 Kg, 87cm) after complete correction of cAVSD
- State 1 week after heart catheter examination with balloon valvuloplasty of the LAVV (reduction of mean gradient from 14 to 6 mmHg)
- Good biventricular function (LVEF 50%, RVEF 64%)
- Light RV hypertrophy
- Severe LAVV stenosis (mean gradient 16mmHg), MVA 0.7cm², LAVV anulus 11.6mm
- Moderate LAVVR and dilatation of LA (19mm)
- ½ systemic pressure in RV
- Repeated readmission because of right ventricular de-compensation
- Risk of volume overload during planned chemotherapy

“Leave it“

“Correct it“
First Re-do

- Open bilateral commisurotomy
- Posterior papillary muscle fenestration
- LAVV repair (resection, perianular patch augmentation)
Second Re-do

- Operation was performed via a transseptal access to the mitral valve.
- Trans-annular enlargement of the LAVV annulus was performed.
- In order to prepare the Melody® valve for the implantation we shortened the valve from 3 cm to 2 cm by bending the progs outswards (Fig. 1, 2 and 3).

Fig. 1: The native Melody® valve
Fig. 2 + 3: Preparation of the Melody® valve before implantation
Second Re-do

• Annular fixation was achieved by using 10 single 5-0 prolene stiches (Fig 4. and 5).

• Further stabilisation was achieved by dillatation of the valve using 14 mm and 16 mm balloon.

• The complete anterior leaflet and the corresponding subvalvular apparatus was retained to sustain left ventricular geometry and function.

Fig. 4: Fixation of the valve

Fig. 5: Insertion of the Melody® valve in mitral position
Postoperative x-ray
Histopathological workup

Macroscopy of the explanted Melody® valve
Histopathological workup

Radioscopy of the explanted Melody® valve (Longitudinal and transversal sections)
Histopathological workup

Overview transversal section

Overview at the level of the pocket valve

Microscopy pocket valve/ Richardson blue staining
Prof. Michael Hübler
Prof. Oliver Kretschmar
PD. Dr. Hitendu Dave
Dr. med. Michael Hofmann
PD. Dr. Martin Schweiger
Prof. Matthias Sigler
PD. Dr. Walter Knirsch
Dr. med. Anna Cavigelli
Dr. med. Juliane Krüger
Dr. med. Roland Weber
Prof. Burkhardt Seifert
Dr. med. Dominik Stambach