Sleep Apnea and Heart Failure

Micha T. Maeder, MD
Cardiology Division
Kantonsspital St. Gallen
Switzerland
micha.maeder@kssg.ch
Sleep Disordered Breathing (SDB) in HFrEF

700 HFrEF patients (LVEF <40%), NYHA II-IV: SDB (AHI >5/h) in 76%: 36% OSA, 40% CSA

<table>
<thead>
<tr>
<th></th>
<th>No SDB (n=169)</th>
<th>OSA (n=253)</th>
<th>CSA (n=278)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61±11</td>
<td>65±10</td>
<td>66±11</td>
</tr>
<tr>
<td>Sex (f)</td>
<td>40%</td>
<td>14%</td>
<td>13%</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26±4</td>
<td>28±5</td>
<td>26±4</td>
</tr>
<tr>
<td>NYHA class</td>
<td>2.6±0.5</td>
<td>2.6±0.5</td>
<td>2.9±0.5</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>28±7</td>
<td>29±3</td>
<td>27±7</td>
</tr>
<tr>
<td>LA diameter (mm)</td>
<td>47±8</td>
<td>51±8</td>
<td>53±9</td>
</tr>
</tbody>
</table>

Sleep Disordered Breathing (SDB) in HFrEF

SDB in HFrEF

CSA
- marker of heart failure severity
- epiphenomen
- compensatory mechanism?
- therapeutic target?

OSA
- independent co-factor contributing to cardiovascular dysfunction
- consequence of congestion?
- therapeutic target?
Central Sleep Apnea (CSA) in Heart Failure

![Graph showing BNP and CSA](image)

- **BNP and CSA**
 - **p<0.0001**

- **PCWP and CSA**
 - \(r = 0.47 \)
 - \(p = 0.006 \)

SDB in HFrEF

- CSA
 - marker of heart failure severity
 - epiphenomenon
 - compensatory mechanism?
 - therapeutic target?

- OSA
 - Independent co-factor contributing to cardiovascular dysfunction
 - consequence of congestion
 - therapeutic target?
Rostral fluid shift: possible contribution to OSA

Kasai T et al. Circulation 2012;126:1495-1510
Why might OSA be relevant for HF?
OSA and HF: lines of evidence

- Pathophysiological concept
- OSA and CV risk factors
- OSA and cardiac structure/function
- OSA and CAD and AF
- OSA and HFrEF
- Effects of CPAP
OSA and HF: lines of evidence

• Pathophysiological concept
• OSA and CV risk factors
• OSA and cardiac structure/function
• OSA and CAD and AF
• OSA and HFrEF
• Effects of CPAP
Mechanisms OSA-CV dysfunction

- Cycles of *intermittent hypoxia and arousals*
 - Sympathetic nervous system activity \uparrow
 - Oxidative stress \uparrow
 - Systemic inflammation \uparrow
- Sleep fragmentation, sleep deprivation
- Intrathoracic pressure swings

Muscle sympathetic nerve activity in OSA

Heart rate recovery and OSA severity

Maeder MT et al. Sleep Med 2008;9:753-61
Simulated apnea (Mueller manoeuvre) and LV strain

OSA and HF: lines of evidence

- Pathophysiological concept
- OSA and CV risk factors
- OSA and cardiac structure/function
- OSA and CAD and AF
- OSA and HFrEF
- Effects of CPAP
OSA and hypertension

• **Association** well established, problem of «confounding factors» (obesity)

• **Prevalence**↑: AHI 15 h⁻¹: 1.8-fold risk of hypertension compared to AHI 0 h⁻¹

• **Incidence**↑: 1.42 for AHI 0-1-4.9 h⁻¹, 2.03 for AHI 5-14.9 h⁻¹, and 2.89 for AHI ≥15 h⁻¹ versus AHI 0h⁻¹

• **CPAP**: established but small antihypertensive effect

Young T et al. Arch Intern Med 1997;157:1746-52
OSA and diabetes

• **Problem:** confounding factors (obesity)

• **Prevalence**↑: relative risk 2.3 for AHI 15 h\(^{-1}\) compared to AHI<5 h\(^{-1}\)

• **Incidence**↑: relative risk for diagnosis of diabetes within four years: 1.62 for AHI ≥15 h\(^{-1}\) compared to AHI <5h\(^{-1}\)

• **Prevention and treatment** of diabetes by CPAP: unknown

West SD et al. Thorax 2007;62:969-74
OSA and HF: lines of evidence

- Pathophysiological concept
- OSA and CV risk factors
- OSA and cardiac structure/function
- OSA and CAD and AF
- OSA and HFrEF
- Effects of CPAP
LV diastolic dysfunction

LV systolic dysfunction

LA dilatation

RV dilatation

RV hypertrophy

Pulmonary hypertension

Coronary artery disease

LV hypertrophy

LA dilatation

Atrial fibrillation

OSA and cardiac structure and function

<table>
<thead>
<tr>
<th></th>
<th>Effect of OSA</th>
<th>Effect of CPAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV mass</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Systolic LV function (s’, strain)</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Diastolic LV function (e’)</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>LA size</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Pulmonary pressure</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>RV size</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>RV function</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>RA size</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
LV mass index and OSA severity (AHI)

Effect of CPAP on LV function

LV diastolic function

LV systolic function

Butt M et al. Circ HF 2012;5:226-33
Effect of CPAP on the right heart

Right atrial volume index

- Graph A shows the change in right atrial volume index (RAVI) over the number of months of CPAP therapy. The index decreases with increasing therapy duration, indicated by asterisks (*) on the graph.

Right ventricular enddiastolic diastolic diameter

- Graph B displays the reduction in right ventricular enddiastolic diameter (RVDD) with prolonged CPAP therapy. Similar to the atrial index, the diameter decreases over time, marked by asterisks.

Right ventricular enddiastolic volume index

- Graph C illustrates the decrease in right ventricular enddiastolic volume index (RVEDV) across therapy periods. The index also shows a notable decline with extended treatment, signified by asterisks.

Colish et al. Chest 2012;141:674-81
OSA and HF: lines of evidence

• Pathophysiological concept
• OSA and CV risk factors
• OSA and cardiac structure/function
• OSA and CAD and AF
• OSA and HFrEF
• Effects of CPAP
OSA and coronary artery disease

Event-free survival

Time (months)

Treated group

Untreated group

P < 0.01

Milleron et al. Eur Heart J 2004;25:728-34
OSA and atrial fibrillation

Prevalence of AF in OSA↑

AF recurrence after PVI↓

OSA and HF: lines of evidence

- Pathophysiological concept
- OSA and CV risk factors
- OSA and cardiac structure/function
- OSA and CAD and AF
- OSA and HFrEF
- Effects of CPAP
OSA and incident heart failure

<table>
<thead>
<tr>
<th></th>
<th>AHI (Events per Hour)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5.0</td>
<td>5.0 to 14.9</td>
<td>15.0 to 29.9</td>
<td>≥30.0</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of subjects</td>
<td>829</td>
<td>644</td>
<td>282</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>No. of heart failure events</td>
<td>44</td>
<td>46</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Covariates in model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, race, BMI, smoking</td>
<td>1.00 (Referent)</td>
<td>0.96 (0.63, 1.46)</td>
<td>1.17 (0.71, 1.94)</td>
<td>1.61 (0.95, 2.71)</td>
<td>0.03</td>
</tr>
<tr>
<td>Plus total and HDL cholesterol, lipid-lowering medications, diabetes mellitus</td>
<td>1.00 (Referent)</td>
<td>0.90 (0.59, 1.38)</td>
<td>1.08 (0.65, 1.80)</td>
<td>1.59 (0.94, 2.69)</td>
<td>0.02</td>
</tr>
<tr>
<td>Plus SBP, DBP, use of antihypertensive medications</td>
<td>1.00 (Referent)</td>
<td>0.88 (0.57, 1.35)</td>
<td>1.13 (0.68, 1.89)</td>
<td>1.58 (0.93, 2.66)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Gottlieb DJ et al. Circulation 2010;122:352-60
60 patients with HFrEF (LVEF ≤22%); 43 patients with AHI ≥15/h, 17 patients with AHI <15/h
Effect of CPAP on MSNA in Patients with HFrEF and OSA

17 patients with HFrEF (LVEF <45%) and SDB (AHI >20/h, predominantly OSA), randomized to CPAP for one month (n=8) vs. no CPAP (n=8)

Usui K et al. J Am Coll Cardiol 2005;45:2008-11
NE spillover and prognosis in HFrEF

Kaye DM et al. J Am Coll Cardiol 1995;26:1257-1263
Effect of CPAP on LVEF in HFrEF and OSA

24 patients with HFrEF (LVEF <45%) and OSA (AHI ≥40/h), 55 years, predominantly men, BMI ≥32 kg/m², 100% on ACEI, 50% on BB, randomized to CPAP + optimal medical treatment vs. optimal medical treatment for one month.
Effect of CPAP on LVEF in HFrEF and OSA

164 patients with HFrEF (LVEF <45%), 80% on betablocker:

- No/mild OSA (AHI <15/h; n=113)
- Untreated moderate/severe OSA (AHI ≥15/h; n=37)
- CPAP-treated moderate/severe OSA (n=14)

Moderate/severe OSA: CPAP vs. untreated: trend in favour of CPAP (p=0.07)

88 patients with HFrEF (LVEF <50%) and AHI ≥15/h (predominantly OSA; 60% on betablocker): 65 with CPAP, 23 without CPAP

p=0.03
HR ≈ 2.0

Baseline AHI
45±17/h

Baseline AHI
38±21/h

Kasai T et al. Chest 2008;133:690-6
<table>
<thead>
<tr>
<th>dilated</th>
<th>Size</th>
<th>Non-dilated</th>
</tr>
</thead>
<tbody>
<tr>
<td>eccentric</td>
<td>Remodeling</td>
<td>concentric</td>
</tr>
<tr>
<td>↓↓↓↓</td>
<td>Systolic function</td>
<td>↓</td>
</tr>
<tr>
<td>↓ bis ↓↓↓</td>
<td>Diastolic function</td>
<td>↓ bis ↓↓↓</td>
</tr>
</tbody>
</table>
Novel definition ESC 2016

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>HFrEF</th>
<th>HFmrEF</th>
<th>HFpEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms ± signs</td>
<td>Symptoms ± signs</td>
<td>Symptoms ± signs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVEF</th>
<th><40%</th>
<th>40-49%</th>
<th>≥50%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional criteria</th>
<th>-</th>
<th>NP↑ +LVH/LAE</th>
<th>NP↑ +LVH/LAE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Clinical scenario</th>
<th>DCM</th>
<th>Small MI + others</th>
<th>HHD + others</th>
</tr>
</thead>
</table>

Ponikowski et al. EHJ 2016 May 20 [epub ahead of print]
«phenotype diversity» in HFpEF

- Ventricular Dysfunction
 - Impaired relaxation
 - Impaired filling
 - Systolic dysfunction

- Atrial dysfunction

- Autonomic dysfunction
 - Chronotropic incompetence

- Vascular dysfunction
 - Vascular stiffening
 - Venticulo-arterial coupling

- Elevated Blood
 - Inadequate BP response to exercise
 - Pulmonary hypertension

- Valvular
 - Dynamic mitral regurgitation

- Lung Disease
 - COPD

- Lung Disease
 - Iron Deficiency
 - Anemia

- Renal Dysfunction
 - Volume Overload

- Aging & Deconditioning

- Obesity & Sarcopenia

- Psychiatric Disorders
 - Depression

- Hypertension
 - Diabetes
 - ROS Production

OSA and HF: lines of evidence

• Pathophysiological concept
• OSA and CV risk factors
• OSA and cardiac structure/function
• OSA and CAD and AF
• OSA and HFrEF
• Effects of CPAP
Summary: OSA and Heart Failure

- OSA associated with CV risk factors
- OSA associated with cardiac dysfunction and cardiac diseases associated with HF
- OSA associated with increased sympathetic activation in patient with and without HF
- CPAP therapy with beneficial effects on these features in patients with OSA without HF
- Improvement in LVEF following CPAP in patients with HF and reduced LVEF (very small studies)
- No conclusive data on impact of CPAP therapy on outcomes in patients with HF and reduced LVEF