Rapid and body weight-independent improvement of endothelial and high density lipoprotein function after Roux-en-Y gastric bypass: Role of Glucagon-like preptide-1

Elena Osto, MD, PhD

Center for Molecular Cardiology, University of Zurich and University Heart Center, Cardiology, University Hospital Zurich, Switzerland
Bariatric surgery reduces cardiovascular morbidity and mortality

Bariatric surgery (RYGB) is the **only effective** treatment against severe obesity (BMI > 35 Kg/m²)

-long lasting weight loss **15-35%**

Diabetes improves **immediately (days)** after bariatric surgery, before any significant weight loss

Umeda LM et al, Obes Surg 2011
Pournaras D et al, Ann Surg 2010
Sjöström L et al., NEJM 2004; JAMA 2014
How does this happen?

RYGB/VSG
- Change Gut Physiology

Modulation
- GUT Hormones

Benefits
- Whole Body

Roux-en-Y Gastric Bypass

César Roux (1857-1934)

Glucagon Like Peptide-1 (GLP-1) increase after RYGB

Patti MA et al. Obesity 2009
Jørgensen NB et al Diabetes 2013

Glucagon-like peptide (GLP1) has pleiotropic cardio-metabolic actions

Campbell, J. et al Cell Metabolism. 2013
Rapid and body weight-independent improvement of endothelial and high-density lipoprotein function after Roux-en-Y gastric bypass:
role of glucagon-like peptide-1.

Osto E. et al. Circulation 2015; 131:871-881
Study design

A. Rat model

- **Surgery**
 - 7 weeks of high fat (60% kcal fat) + high cholesterol (1.25%) diet
 - liraglutide: 0.2mg/kg 2xS.C. Inj; exendin 9: 10ug/kg/h minipumps

- **8 days**
 - controls + liraglutide
 - body-weight-matched
 - RYGB
 - RYGB + exendin9-39

- **Harvesting**
 - endothelial function
 - HDL properties evaluation

B. 29 Patients

- **28 Healthy -29 BMI-matched to 12 weeks**

- **Fasting blood sampling:**
 - (D0) RYGB
 - (D14) 14 days
 - (12 weeks) 12 weeks

- **-HDL properties evaluation**
Results

<table>
<thead>
<tr>
<th></th>
<th>D0</th>
<th>RYGB D14 (n=29)</th>
<th>12W</th>
<th>BMI-matched to 12W RYGB (n=29)</th>
<th>Healthy (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP-1, pg/ml</td>
<td>0.70±0.11</td>
<td>3.88±0.49<sup>b</sup></td>
<td>2.3±0.42<sup>b</sup></td>
<td></td>
<td>1.5±1.9</td>
</tr>
<tr>
<td>Bile acids, umol/L</td>
<td>8.23±0.49<sup>a</sup></td>
<td>9.40±0.53<sup>a</sup></td>
<td>11.79±0.75<sup>bc</sup></td>
<td></td>
<td>12.09±0.73</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>6.40±0.25<sup>a</sup></td>
<td>5.39±0.11<sup>b</sup></td>
<td>5.12±0.11<sup>b</sup></td>
<td>5.49±0.27</td>
<td>5.29±0.15</td>
</tr>
<tr>
<td>Insulin, u UI/ml</td>
<td>19.91±2.87<sup>a</sup></td>
<td>13.49±1.48<sup>ab</sup></td>
<td>11.60±1.48<sup>b</sup></td>
<td>13.91±1.64</td>
<td>6.18±1.0</td>
</tr>
<tr>
<td>HOMA IR</td>
<td>2.62±0.34<sup>a</sup></td>
<td>1.81±0.16<sup>ab</sup></td>
<td>1.44±0.16<sup>bc</sup></td>
<td>1.81±0.21</td>
<td>0.82±0.14</td>
</tr>
</tbody>
</table>

Osto E et al. Circulation 2015
Endothelial vasorelaxation

Pre-incubation with L-NAME completely inhibited the relaxation induced by both insulin and GLP-1.
- reduced oxidative stress,
 increased aortic NO bioavailability

- GLP-1-dependent signaling was selectively activated in rat aortae after RYGB independently from weight loss and was mimicked by liraglutide treatment

Osto E et al. Circulation 2015
A certain degree of weight and BMI is not sufficient or critical per se to improve the protective properties of HDL.

Osto E et al. Circulation 2015
The superior benefits of bariatric surgery compared to current conservative management likely result from the influence of surgery on several cardio-metabolic aspects. Some of these may be GLP-1 mediated.

Understanding how bariatric surgery leads to these cardio-metabolic benefits may help to design novel therapeutic strategies against morbid obesity and in particular its severe cardiovascular risk.
Acknowledgements

Centre for Molecular Cardiology, University of Zurich, University Heart Center, University Hospital Zürich
P Doytcheva, CM Matter, TF Lüscher

Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich
TA Lutz, C Corteville, E Tarasco, Bächler T

Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich
M Büter, D Vetter

Institute of Clinical Chemistry, University Hospital Zürich
A von Eckardstein, L Rohrer, R Hasballa

Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zürich
P Gerber, G Spinas

Institut Pasteur de Lille, Lille, France
B Staels, S Colin, A Tailleux

Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong
PM Vanhoutte

Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Italy
F Tona, S iliceto
Thank you for your attention!