Success and Limitations of Current Hypolipidemic Drug Therapy

Walter F. Riesen
Prof. em Dr. Dr. h.c., Diessenhofen
Conflicts of Interest

Advisory Boards or Speaker’s Fees from Amgen, AstraZeneca, MSD, Sanofi, Pfizer
Success of Current Hypolipidemic Drug Therapy

- Statins
- Statin/Ezetimibe
- PCSK9 inhibitors

\[\text{LDL-Lowering} \]
Statins have repeatedly shown a great benefit by lowering LDL-C.
5 Years’ Benefit of LDL-C Lowering by Statins at Various Risk

The higher the risk, the higher the benefit.
Statins, what else?
IMPROVE-IT

40 mg Simvastatin compared to 40 mg Simvastatin + 10mg Ezetimibe

• IMPROVE-IT – the largest and longest study on the efficacy and safety of a lipid lowering agent (18‘144 participants, follow up 7 years)

Cannon CP et al Ezetimibe added to statin therapy after acute coronary syndromes. NEJM publ on June 3, 2015
IMPROVE-IT
Primary Endpoint — ITT

Event Rate (%)

Time since randomization (years)

HR 0.936 CI (0.887, 0.988)
p=0.016

Simva — 34.7%
2742 events

RRR 6.4%
NNT= 50

EZ/Simva — 32.7%
2572 events

7-year event rates

Cardiovascular death, MI, documented unstable angina requiring rehospitalization, coronary revascularization (≥30 days), or stroke
IMPROVE-IT - Extrapolation of Benefit

Dechamps, Catapano, Packard, Understanding IMPROVE-IT. EHJ 2014
Plot of the IMPROVE-IT Trial Data and Statin Trials for Change in LDL Cholesterol versus Clinical Benefit

(Cannon CP et al. NEJM 2015, DOI: 10.1056/NEJMoa1410489)
Conclusions from IMPROVE-IT

Simvastatin 40mg + Ezetimibe vs Simvastatin 40mg

• IMPROVE-IT: First study to show an incremental benefit from the addition of a non-statin drug (Ezetimibe) to a statin therapy
 - Non-Statin lowering of LDL-C with Ezetimibe reduces cardiovascular events
 - Even lower is even better (mean LDL-C 1.4 vs. 1.8 mmol/l after 1 year)
 - Confirms the safety profile Ezetimibe

Confirms the LDL- theory, that lowering of LDL-C reduces cardiovascular events
Limitations of Current Hypolipidememic Drug Therapy

- Statins and risk for incident type 2 diabetes
- Statins and myopathy
- Niacin and Fibrates and reduction of CV risk
- Residual risk in statin therapy
Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials

9% increase in risk for diabetes

(Sattar N et al Lancet 2010 online Febr.17,2010)
Diabetes Risk in Statin therapy – Harm and Risk

Meta-Analysis of 5 Studies which analyzed intensive vs moderate Statin Therapy

<table>
<thead>
<tr>
<th>Incident Diabetes</th>
<th>Intensive Dose</th>
<th>Moderate Dose</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVE IT-TIMI 22, 2004</td>
<td>101/1707 (5.9)</td>
<td>99/1688 (5.9)</td>
<td>1.01 (0.76-1.34)</td>
</tr>
<tr>
<td>A to Z, 2004</td>
<td>65/1768 (3.7)</td>
<td>47/1736 (2.7)</td>
<td>1.37 (0.94-2.01)</td>
</tr>
<tr>
<td>TNT, 2005</td>
<td>418/3798 (11.0)</td>
<td>358/3797 (9.4)</td>
<td>1.19 (1.02-1.38)</td>
</tr>
<tr>
<td>IDEAL, 2005</td>
<td>240/3737 (6.4)</td>
<td>209/3724 (5.6)</td>
<td>1.15 (0.95-1.40)</td>
</tr>
<tr>
<td>SEARCH, 2010</td>
<td>625/5398 (11.6)</td>
<td>587/5399 (10.9)</td>
<td>1.07 (0.95-1.21)</td>
</tr>
<tr>
<td>Pooled odds ratio</td>
<td>1449/16408 (8.8)</td>
<td>1300/16344 (8.0)</td>
<td>1.12 (1.04-1.22)</td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>$\hat{p}^2 = 0%$; $P = .60$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incident CVD</th>
<th>Intensive Dose</th>
<th>Moderate Dose</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVE IT-TIMI 22, 2004</td>
<td>315/1707 (18.4)</td>
<td>355/1688 (21.0)</td>
<td>0.85 (0.72-1.01)</td>
</tr>
<tr>
<td>A to Z, 2004</td>
<td>212/1768 (12.0)</td>
<td>234/1736 (13.5)</td>
<td>0.87 (0.72-1.07)</td>
</tr>
<tr>
<td>TNT, 2005</td>
<td>647/3798 (17.0)</td>
<td>830/3797 (21.9)</td>
<td>0.73 (0.65-0.82)</td>
</tr>
<tr>
<td>IDEAL, 2005</td>
<td>776/3737 (20.8)</td>
<td>917/3724 (24.6)</td>
<td>0.80 (0.72-0.89)</td>
</tr>
<tr>
<td>SEARCH, 2010</td>
<td>1184/5398 (21.9)</td>
<td>1214/5399 (22.5)</td>
<td>0.97 (0.88-1.06)</td>
</tr>
<tr>
<td>Pooled odds ratio</td>
<td>3134/16408 (19.1)</td>
<td>3550/16344 (21.7)</td>
<td>0.84 (0.75-0.94)</td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>$\hat{p}^2 = 74%$; $P = .004$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data marker size indicates relative weight of the studies; OR, odds ratio; and CI, confidence interval.

High Statin doses: 1 patient with incident diabetes vs prevention of 3 CV events

Preiss D JAMA 2011; 305: 2556
Statins and Diabetes

• Risk of incident type 2 diabetes increases with increasing statin dose
• Especially patients with impaired glucose tolerance or MetS affected
• Increased risk for diabetes may partially be explained by the inhibition of HMGCoAR
• Mutations, which decrease production of LDL-receptors, are associated with the lowest risk for diabetes
• Statins increase production of LDL-receptors
Statins and Diabetes

- Statins reduce macrovascular events
- Microvascular events?
Statin Therapy and cumulative Incidence of microvascular Events und Gangrene
(Nielsen SF and Nordestgaard BG, Lancet Diabetes Endocrinol 2014;2: 894–900)

215,725 Personenjahre Follow-up
Possibilities for Reduction of Diabetes Risk with Statins

• Combination of low dose with Ezetimibe
 Ezetimibe appears to be neutral or even protective with respect to diabetes
• LDL-decrease with PCSK9-Inhibitors

The cardiovascular risk reduction balances by far the potential for diabetes development in patients with high risk
Most Frequent Adverse Effect of Statin Therapy: Muscle Problems

Muscle problems are associated with

- Statin drug interactions
- Patient characteristics
- Statin pharmacokinetics
Limitations in Hypolipidemic Drug Therapy

Niacin from Success to Failure
Niacin - Effects on various Lipoproteins

Niaspan®-daily dosage

Change from baseline (%)

0 500 1000 1500 2000 2500 3000

HDL-C
LDL-C
Lp(a)
TG
Nicotinic Acid and Atherosclerosis: A Positive Effect on Clinical Outcomes

Randomized Controlled Clinical Trials of Nicotinic Acid and Effect on HDL-C and Clinical Outcomes

<table>
<thead>
<tr>
<th>Imaging studies</th>
<th>Special agent(s)</th>
<th>Patients receiving treatment, n/N (%)</th>
<th>Increase in HDL-C levels, %</th>
<th>Follow-up duration, years</th>
<th>Outcomes[^a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP</td>
<td>Niacin</td>
<td>1119/8341 (13.4)</td>
<td>NR</td>
<td>6</td>
<td>Decreased (27%) nonfatal MI</td>
</tr>
<tr>
<td>CDP follow-up</td>
<td>Niacin</td>
<td>1119/8341 (13.4)</td>
<td>NR</td>
<td>15</td>
<td>Decreased (11%) death</td>
</tr>
<tr>
<td>Stockholm</td>
<td>Niacin + clofibrate</td>
<td>279/555 (50.3)</td>
<td>NR</td>
<td>5</td>
<td>Decreased (26%) death; decreased (36%) CAD death</td>
</tr>
<tr>
<td>HATS</td>
<td>Niacin + simvastatin</td>
<td>38/160 (23.8)</td>
<td>26</td>
<td>3.2</td>
<td>Decreased (90%) death, MI, stroke, or revascularization</td>
</tr>
<tr>
<td>AFREGS</td>
<td>Niacin + gemfibrozil + cholestyramine</td>
<td>71/143 (49.7)</td>
<td>36</td>
<td>2.5</td>
<td>Decreased (13%) composite clinical outcome of angina, MI, TIA, stroke, death, and cardiovascular procedures; decreased focal coronary stenosis (secondary outcome)</td>
</tr>
</tbody>
</table>

[^a]: Death indicates all-cause mortality.

CDP = Coronary Drug Project; Stockholm = Stockholm Ischemic Heart Disease Secondary Prevention Study; HATS = HDL Atherosclerosis Treatment Study; AFREGS = Armed Forces Regression Study; NR = not reported; MI = myocardial infarction; CAD = coronary artery disease; TIA = transient ischemic attack.

Adapted from Singh IM et al. *JAMA*. 2007;298:786–798.
Nicotinic Acid and Atherosclerosis: A Positive Effect in Imaging Studies

Randomized Controlled Clinical Trials of Nicotinic Acid and Effect on HDL-C and Atherosclerosis

<table>
<thead>
<tr>
<th>Imaging studies</th>
<th>Special agent(s)</th>
<th>Patients receiving treatment, n/N (%)</th>
<th>Increase in HDL-C levels, %</th>
<th>Follow-up duration, years</th>
<th>Outcomes a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS I</td>
<td>Niacin + colestipol</td>
<td>94/188 (50.0)</td>
<td>37</td>
<td>2</td>
<td>Decreased coronary atherosclerosis</td>
</tr>
<tr>
<td>CLAS II</td>
<td>Niacin + colestipol</td>
<td>75/138 (54.3)</td>
<td>37</td>
<td>4</td>
<td>Decreased coronary atherosclerosis</td>
</tr>
<tr>
<td>FATS</td>
<td>Niacin + colestipol</td>
<td>48/146 (32.9)</td>
<td>43</td>
<td>2.5</td>
<td>Decreased coronary atherosclerosis; Decreased death, MI, or revascularization (secondary outcome)</td>
</tr>
<tr>
<td>CLAS Fem</td>
<td>Niacin + colestipol</td>
<td>80/162 (49.4)</td>
<td>38</td>
<td>2</td>
<td>Decreased femoral atherosclerosis</td>
</tr>
<tr>
<td>CLAS IMT</td>
<td>Niacin + colestipol</td>
<td>39/78 (50.0)</td>
<td>38</td>
<td>4</td>
<td>Decreased carotid IMT; regression also observed at years 1 and 2</td>
</tr>
<tr>
<td>SCRIP</td>
<td>Niacin + colestipol + gemfibrozil + lovastatin + aggressive lifestyle modification</td>
<td>145/300 (48.3)</td>
<td>12</td>
<td>4</td>
<td>Decreased coronary atherosclerosis; Decreased frequency of new coronary lesion formation</td>
</tr>
<tr>
<td>ARBITER 2</td>
<td>Niacin + statin</td>
<td>87/167 (52.1)</td>
<td>21</td>
<td>1</td>
<td>Decreased carotid IMT ($P>0.05$)</td>
</tr>
<tr>
<td>ARBITER 3</td>
<td>Niacin + statin</td>
<td>69/130 (53.1)</td>
<td>23</td>
<td>2</td>
<td>Decreased carotid IMT</td>
</tr>
</tbody>
</table>

aOutcomes:
- Death indicates all-cause mortality.

ARBITER = Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol; CLAS = Cholesterol-Lowering Atherosclerosis Study; CLAS Fem = femoral atherosclerosis group of CLAS; CLAS IMT = carotid ultrasound group of CLAS; FATS = Familial Atherosclerosis Treatment Study; IMT = intima-media thickness; MI = myocardial infarction; SCRIP = Stanford Coronary Risk Intervention Project.
AIM-HIGH (Niaspan®) Kaplan-Meier Curve for the Primary Endpoint

No. at Risk

<table>
<thead>
<tr>
<th>Condition</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo plus statin</td>
<td>1696</td>
<td>1581</td>
<td>1381</td>
<td>910</td>
<td>436</td>
</tr>
<tr>
<td>Niacin plus statin</td>
<td>1718</td>
<td>1606</td>
<td>1366</td>
<td>903</td>
<td>428</td>
</tr>
</tbody>
</table>

P = 0.79 by log-rank test
HPS2-Thrive (Niaspan® & Laropiprant®)
First Major Vascular Effect during Follow-up (prim. endpoint negative)
Limited Success with Fibrate Therapy

• FIELD (patients with type 2 diabetes): primary endpoint negative, inadequate study population
 – patients who qualified for statin therapy.
 – Important number of patients treated with statins in the placebo group
• ACCORD (patients with type 2 diabetes): primary endpoint negative, inadequate study population as in FIELD.
• However predefined subgroup of patients with atherogenic dyslipidemia (70% higher risk) showed more than 30% risk reduction
• Reduction in microvascular endpoints
Limitation of LDL Lowering with Statins

Substantial residual CV risk for many patients under statin therapy LDL lowering is not enough

<table>
<thead>
<tr>
<th>Trial (N)</th>
<th>Statin treatment</th>
<th>Risk reduction vs placebo</th>
<th>Remaining risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOSCOPS** (6595)</td>
<td>Pravastatin 40 mg</td>
<td>31%</td>
<td>69%</td>
</tr>
<tr>
<td>AFCAPS/TexCAPS** (6605)</td>
<td>Lovastatin 20/40mg</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>ASCOT-LLA** (10,305)</td>
<td>Atorvastatin 10 mg</td>
<td>38%</td>
<td>62%</td>
</tr>
<tr>
<td>4S** (4444)</td>
<td>Simvastatin 20 mg</td>
<td>26%</td>
<td>74%</td>
</tr>
<tr>
<td>CARE*** (4159)</td>
<td>Pravastatin 40 mg</td>
<td>24%</td>
<td>76%</td>
</tr>
<tr>
<td>LIPID*** (9014)</td>
<td>Pravastatin 40 mg</td>
<td>24%</td>
<td>76%</td>
</tr>
<tr>
<td>HPS*** (20,536)</td>
<td>Simvastatin 40 mg</td>
<td>27%</td>
<td>73%</td>
</tr>
<tr>
<td>PROSPER*** (5804)</td>
<td>Pravastatin 40 mg</td>
<td>24%</td>
<td>76%</td>
</tr>
<tr>
<td>JUPITER (17802)</td>
<td>Rosuvastatin 20 mg</td>
<td>44%</td>
<td>56%</td>
</tr>
</tbody>
</table>
Conclusions I

• Success of Hypolipidemic Drug Therapy
 – LDL-cholesterol lowering is associated with a proportional effect on vascular event reduction
 – Statins – therapy of choice (significant reduction of CV morbidity)
 – Extent of LDL-C lowering essential, not kind
Conclusions II

• **Limitations of Hypolipidemic Drug Therapy**
 – Statins and incident diabetes, statins and myopathy
 – Niacin – no more on market (adverse effects)
 – Fibrates only in atherogenic dyslipidemia
 – Residual risk after LDL-lowering
 ➞ Control of other CV risk factors? HDL-C?
Thank you very much for your attention!