Contrast enhanced ultrasound molecular imaging of the inflammatory response in myocarditis

DC. Steinl¹, E. Khanicheh¹, L. Xu², M. Mitterhuber², K. Glatz³, E. Ellertsdottir², Amanda Ochoa-Espinosa², BA. Kaufmann¹

¹ University Hospital Basel, Cardiology, Basel, Switzerland
² University Hospital Basel, Department of Biomedicine, Basel, Switzerland
³ University Hospital Basel, Pathology, Basel, Switzerland

Conflicts of interest: none
Background: Myocarditis

- Major cause of sudden unexpected death in adults under 40 years
- Direct viral injury and host immune response can lead to dilated cardiomyopathy
Background: Myocarditis

- Major cause of sudden unexpected death in adults under 40 years
- Direct viral injury and host immune response can lead to dilated cardiomyopathy
- CD4+ lymphocytes are crucial in mediating an autoimmune response

Background: Diagnostic tools for Myocarditis

- No non-invasive imaging method available to assess specific components of the inflammatory process in myocarditis

- **Ultrasound molecular imaging**: Successful detection of inflammation in models of ischemia reperfusion

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical symptoms</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>ECG</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Laboratory</td>
<td>+++</td>
<td>(+)</td>
</tr>
<tr>
<td>Echochardiography</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MRI</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Endomyocardial biopsy</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

1 Villanueva et al. Circulation 2007;115:345-52
“Ultrasound molecular imaging can detect myocarditis and specific cellular components with the use of targeted microbubbles”
Methods: Study design

- **Induction of experimental autoimmune myocarditis (EAM)**
 8 weeks old balb/c mice

 9 weeks 10 weeks 11 weeks

 control

 9 weeks 10 weeks 11 weeks

 Pertussis Toxin i.p.
 Cardiac myosin heavy chain s.c.
Methods: Study design

- **Induction of experimental autoimmune myocarditis (EAM)**
 8 weeks old balb/c mice

- **Methods:**
 - Pertussis Toxin: i.p.
 - Cardiac myosin heavy chain: s.c.

- **Induction Timeline:**
 9 weeks | 10 weeks | 11 weeks

- **Control Timeline:**
 9 weeks | 10 weeks | 11 weeks

- **Imaging Techniques:**
 - High frequency ultrasound imaging
 - Ultrasound molecular imaging
 - Histology, Immunohistology
Methods: Study design

- **Induction of experimental autoimmune myocarditis (EAM)**
 8 weeks old balb/c mice

 ![Injection Schedule](image)
 - Pertussis Toxin i.p.
 - Cardiac myosin heavy chain s.c.

 ![Timeline](image)
 - 9 weeks
 - 10 weeks
 - 11 weeks

 Control
 - 9 weeks
 - 10 weeks
 - 11 weeks

 High frequency ultrasound imaging
 Ultrasound molecular imaging
 Histology, Immunohistology

- **Pathologist blinded to treatment scored tissue using established criteria**

 ![Histology Images](image)
 - No Myocarditis
 - Moderate Myocarditis
 - Severe Myocarditis

 ![Scales](image)
 50 µm

Methods: Microbubble preparation

- Lipid-shelled microbubbles with gas core (Decafluorobutane)
Methods: Microbubble preparation

- Lipid-shelled microbubbles with gas core (Decafluorobutane)

- Targeting of microbubbles
 - Specific **shell components**
 - MB_{PS}: incorporation of phosphatidylserine
 (target: activated leukocytes)\(^1\)

\(^1\) Lindner JR et al., Circulation 2000; 102:2746-2750
Methods: Microbubble preparation

- Lipid-shelled microbubbles with gas core (Decafluorobutane)

- Targeting of microbubbles
 - Specific shell components
 - MB_{PS}: incorporation of phosphatidylserine (target: activated leukocytes)1
 - Surface conjugation of antibodies
 - MB_{CD4}: anti-CD4 antibody [H129.19] (target: CD4$^+$ lymphocytes)
 - MB_{PSele}: anti-P-Selectin antibody [RB40.34] (target: inflammatory activation of endothelial cells)2
 - MB_{ctr}: isotype control antibody

1 Lindner JR et al., Circulation 2000; 102:2746-2750
2 Lindner JR et al., Circulation 2001; 104:2107-12
Attachment of $\text{MB}_{\text{CD}4}$ to $\text{CD}4^+$ lymphocytes

- $\text{CD}4^+$ lymphocytes isolated from mouse spleens
Attachment of MB$_{CD4}$ to CD4$^+$ lymphocytes

- CD4$^+$ lymphocytes isolated from mouse spleens
- Attachment of MB$_{CD4}$ assessed under static conditions
Attachment of MB_{CD4} to CD4^+ lymphocytes

- CD4^+ lymphocytes isolated from mouse spleens
- Attachment of MB_{CD4} assessed under static conditions
- Microscopic quantification of MB adhesion to cells
CD4-targeted MB: \textit{in vitro} validation

Attachment of \(MB_{CD4} \) to \textbf{CD4+ lymphocytes}:

- CD4+ lymphocytes isolated from mouse spleens
- Attachment of \(MB_{CD4} \) assessed under static conditions
- Microscopic quantification of MB adhesion to cells

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Attached MB / visual field}
\end{figure}
CD4-targeted MB: *in vitro* validation

Retention of MB$_{CD4}$ on **CD4 protein under flow**

- Parallel plate flow chamber (Glyotech Co.)
- CD4 protein adsorbed to cover slip
- MB$_{CD4}$ or MB$_{Ctr}$ (3x106 ml$^{-1}$) drawn with 2 dynes/cm2
- Microscopy for quantification of MB adhesion
Novel CD4-targeted Microbubbles

- Specifically attach to CD4$^+$ lymphocytes
- Attach to CD4 protein under flow conditions
Methods: High Frequency Ultrasound

- Imaging with 40 MHz (VEVO 2100 VisualSonics)
 - EF calculated from left ventricular end-systolic and end-diastolic diameters measured on M-Mode
 - Strain determined on B-mode images with speckle tracking algorithms

- Analysis performed by an investigator blinded for animal treatment
Methods: Ultrasound Molecular Imaging

- Linear array probe (15L8, Sequoia 512 Siemens)
- Contrast Pulse Sequence imaging at 7 MHz
- i.v. injection of 3×10^6 microbubbles (MB_{CD4}, MB_{PSel}, MB_{PS} and MB_{Ctr})
- Subtraction of pre- and post- destruction to derive signal from retained microbubbles
- Analysis performed by an investigator blinded for animal treatment

Heart imaged in short axis at papillary muscles
Results: Myocardial Systolic Function

Ejection fraction

- Control Animals (n=20)
- Myocarditis Moderate (n=12)
- Myocarditis Severe (n=8)

Ejection fraction [%]

n.s.
Methods: Ultrasound Molecular Imaging

Control Animals (n=20)

Acoustic Intensity (AU)

- Ctr
- CD4
- Psel
- PS

*/**/*** p-Values < 0.05/0.01/0.001
Methods: Ultrasound Molecular Imaging

Control animal

Severe Myocarditis
Results: MB_{CD4} Signal vs. CD4$^+$ Counts

- Heart sections stained for CD4 with immunohistology
Results: MBCD4 Signal vs. CD4$^+$ Counts

- Heart sections stained for CD4 with immunohistology
- Number of CD4$^+$ lymphocyte

![Low CD4 count](image1.png)

![High CD4 count](image2.png)

CD4$^+$ cells / mm2
Results: MB\textsubscript{CD4} Signal vs. CD4+ Counts

- Heart sections stained for CD4 with immunohistology
- Number of CD4+ lymphocyte vs. signal intensity of MB\textsubscript{Ctr} and MB\textsubscript{CD4}

MB\textsubscript{Ctr}

\[
f(x) = 0.008x + 1.56 \\
R^2 = 0.16 \\
p = 0.06
\]

MB\textsubscript{CD4}

\[
f(x) = 0.031x + 2.17 \\
R^2 = 0.45 \\
p < 0.001
\]
Conclusions

- Ultrasound molecular imaging can detect leukocyte infiltration and endothelial inflammation in myocarditis.
Conclusions

- Ultrasound molecular imaging can detect leukocyte infiltration and endothelial inflammation in myocarditis.
- Detection is possible even in moderate myocarditis, where functional imaging fails to show differences.
- Specific imaging of the recruitment of CD4+ lymphocytes involved in autoimmune responses in myocarditis is possible.

Contrast enhanced ultrasound molecular imaging could be a promising technique for the diagnosis of myocarditis.
Strain Measurements

longitudinal

<table>
<thead>
<tr>
<th>Strain [%]</th>
<th>Control Animals (n=20)</th>
<th>Myocarditis Moderate (n=12)</th>
<th>Myocarditis Severe (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p=0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

circumferential

<table>
<thead>
<tr>
<th>Strain [%]</th>
<th>Control Animals (n=20)</th>
<th>Myocarditis Moderate (n=12)</th>
<th>Myocarditis Severe (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

radial

<table>
<thead>
<tr>
<th>Strain [%]</th>
<th>Control Animals (n=20)</th>
<th>Myocarditis Moderate (n=12)</th>
<th>Myocarditis Severe (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Myocardial Perfusion

- Linear array probe (15L8, Sequoia 512 Siemens)
- Contrast Pulse Sequence imaging at 7 MHz
- Continuous i.v. injection of $5 \times 10^6 \text{ MB s}^{-1}$
- Imaging with high MI
Microbubble size distribution
Inflammation in Myocarditis

Yuan et al, Journal of Clin Immunology 2010; 30:226-34

Fig. 1. Possible mechanisms involved in the pathogenesis of autoimmune myocarditis.
Targeted Contrast Background Subtraction

![Graph showing the number of microbubbles over imaging time with curves for total, free floating, and adhering microbubbles.](image)

- **Total**
- **Free floating**
- **Adhering**

Pre-destruction and imaging time axes.