

Kardiologie

TAVI for Bicuspid Aortic Stenosis and Aortic Regurgitation

Open Issues Related to TAVI SSC/SSCS Joint Annual Meeting Zürich, 10. Juni 2015

Bicuspid Aortic Stenosis

- Most common congenital heart defect (1–2%)
- Males:females 2:1
- Two leaflets instead of three
 - Two symmetric leaflets
 - Three leaflets with raphe («seam»)
- Elliptical valve orifice
- Possible additional intrinsic structural defect of the aortic media with subsequent aortic dilation

Bicuspid Valves in Aortic Stenosis

→ TAVI is frequently performed in un-recognized bicuspid valves!

TAVI in Bicuspid Aortic Stenosis

- Relative contraindication to TAVI
- Specific concerns:
 - An elliptically shaped annulus that may impair valve positioning and sealing
 - 2. Asymmetrical and heavy calcification of leaflets may impede valve expansion and valve hemodynamics (e.g., higher transvalvular gradients and paravalvular leak)
 - Presence of aortic disease increases the risk of dissection or rupture during valvuloplasty, postdilatation, or implantation of balloon-expandable valves
 - 4. Fused commissures are susceptible to disruption during balloon valvuloplasty, resulting in severe aortic regurgitation
 - 5. Underexpansion and/or a non-circular shape of the transcatheter heart valve may affect long-term durability

TAVI in Bicuspid Aortic Stenosis: 1-Year Outcome

German TAVI Registry: BAV (n=38, 3%) vs. TAV (1'357, 97%)

TAVI in Bicuspid Aortic Stenosis: Aortic Regurgitation

Aortic regurgitation Grade≥2: 28.4% → 17% (sizing with MSCT)

	Univariate Analysis			Multivariate Analysis		
Characteristic	Odds Ratio	95% CI	p Value	Odds Ratio	95% CI	p Value
Age	0.95	0.96-1.03	0.63			
Males	3.50	1.50-8.20	0.004	4.29	1.63-10.79	0.003
STS PROM	0.85	0.75-1.04	0.05	0.88	0.75-1.04	0.13
Mean aortic gradient	0.99	0.97-1.02	0.61			
Aortic valve area	3.20	0.34-29.86	0.31			
LV ejection fraction ${<}40\%$	1.40	0.62-3.14	0.41			
Annulus size	0.93	0.82-1.04	0.20			
TAV size	1.10	0.92-1.31	0.31			
MSCT-based TAV sizing	0.23	0.10-0.51	< 0.0001	0.19	0.08-0.45	< 0.0001
Bicuspid type 1	2.14	0.82-5.56	0.11			
CoreValve	1.93	0.82-4.54	0.13			
Year of procedure	0.78	0.60-1.03	0.08			

Case Bicuspid Valve

- 84 year old male patient
- Chronic renal failure
- COPD GOLD II
- Severe symptomatic aortic stenosis (dP mean 75 mmHg)

- Annular diameter = 28 mm
- Valve = functionally bicuspid
- Orifice diameter = 22-25 mm

Sizing: Predilatation with 24 mm LomaVista Balloon

Implantation of a 25 mm Lotus Valve

TAVI in Aortic Regurgitation

- Aortic regurgitation without calcification: no indication for TAVI or rather classical contraindication to TAVI
- Specific concerns:
 - Absence of annular or leaflet calcification → Dislocation or embolization of the valve
 - Dilation of the sinus aortae → TAVI sizes too small, potential residual regurgitation
 - 3. Due to absence of calcifiation, necessary oversizing of the valve → Potential annular rupture

TAVI in Aortic Regurgitation: JenaValve

- CE-approved for aortic regurgitation
- Active clip fixation on the native leaflets and anatomically correct feelerguided positioning

TAVI in Aortic Regurgitation: CoreValve

TAVI in Aortic Regurgitation: Helio Dock/Edwards

Case Aortic Regurgitation

- 81 year old female patient
- Chronic renal failure
- Coronary artery disease
- History of myocardial infarction
- Atrial fibrillation
- Severely impaired LV function
- Repeat cardiac decompensation

JenaValve 27 mm: Positioning

JenaValve 27 mm: Deployment and final result

TAVI in Bicuspid Aortic Valves and Aortic Regurgitation

- Bicuspid valves are more frequent than expected
- TAVI for unrecognized bicuspid aortic valves may lead to suboptimal results
- Good results can be achieved with MSCT sizing, adequate technique and optimal valve selection
- Aortic regurgitation frequently is caused by annular dilation without calcification
- Conventional TAVIs may be difficult to implant, with valve embolization and persisting aortic regurgitation as possible complications
- Special techniques with conventional valves or specific newer valves may be used

Vielen Dank für Ihre Aufmerksamkeit